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Abstract. The Heisenberg antiferromagnet with single-site anisotropy on the fully frustrated
multilayer triangular lattice is investigated by employing the double-time Green’s function. The
origin of the spin gap is analysed; it is suggested to be closely related to the magnetic anisotropy.
The axial and planar susceptibilities and the specific heat are calculated. The theoretical result
agrees with that of a Monte Carlo simulation and that of an experiment on the compounds CsMnI3
and CsMnBr3.

Recent years have seen a flurry of interest caused by the triangular-lattice Heisenberg anti-
ferromagnets (THAF) [1–4]. The attention is attracted mainly because of the fully frustrated
system having spin-glass-like disordered ground states and relates to high-temperature
superconductivity. It is known that the high-Tc superconductors are highly anisotropic,
and have layered structure with strong intra-planar and weak inter-planar coupling. Some
efforts have been made to research the properties of the inter-planar coupling systems [3, 5].
Furthermore, the single-site anisotropy in layered-structure materials has also motivated some
authors’ interest [6] because single-site anisotropy is crucial to the phase transitions and the
critical behaviour of some magnets, for example the compounds CsMnI3 and CsMnBr3 [7].

Here our attention is focused on the triangular-lattice multilayer Heisenberg anti-
ferromagnet with single-site anisotropy without long-range order (LRO). The magnet consists
of multiple layers of triangular lattice, one on top of another, with the intra-planar spin coupling
parameter Jab = 1, the inter-planar parameter ρ = Jc/Jab, and the single-site anisotropy
λ = Jd/Jab. The standard HAF Hamiltonian is expressed as

H =
∑
〈ij〉

si · sj + ρ
∑
〈lm〉

sl · sm − λ
∑
i

(szi )
2 (1)

where the first and second terms are the intra- and the inter-plane couplings, respectively. The
last term denotes the single-site anisotropy. In order to compare the theoretical results with
those from the experiments, the quantity ρ is fixed at 0.2, and the spin of the magnet is supposed
to be S = 5/2. However, λ is varied to allow one to investigate the behaviour of the single-site
anisotropy.
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If the single-site anisotropy term λ
∑
i (s

z
i )

2 is dropped, the Hamiltonian retains rotational
symmetry; consequently the planar correlation function 〈sαi sαj 〉 (α = 〈x, y〉) equals the axial
one 〈szi szj 〉, and in double-time Green function theory only one Green function is introduced
[5]. However, the single-site anisotropy destroys the rotational symmetry, i.e., the planar
correlation function differs from the axial one. In this case two Green functions 〈〈s†

i ; s−j 〉〉 and

〈〈szi ; szj 〉〉 must be introduced, and their time Fourier transforms G(n, ω) = 〈〈s†
i ; s−i+n〉〉 and

Gz(n, ω) = 〈〈szi ; szi+n〉〉 satisfy the equation of motion

ω〈〈A;B〉〉 = 1

2π
〈[A,B]〉 + 〈〈[A,H ];B〉〉 (2)

where [·, ·] denotes the commutator, 〈· · ·〉 the thermal average, and 〈〈A;B〉〉 the time Fourier
transform of the Green function. Introducing order parameters C1 = 〈s†

0s
−
1 〉 andD1 = 〈sz0sz1〉,

and employing the Kondo–Yamaji Green function decoupling scheme [5,8], we can obtain the
space Fourier transforms of the Green functions and correlation functions:

Gz(k, ω) = − 1

2π

C1("k + ρ"ck)

ω2 − ω2
k

(3)

G(k, ω) = − 1

2π

(2D1 + C1)("k + ρ"ck)− 2λ(2D0 − C0)

ω2 −#2
k

(4)

Dn = 〈sz0szn〉 = − 1

N

∑
k

e−ik·nC1("k + ρ"ck)

2ωk
coth

[
ωk

2kBT

]
(5)

Cn = 〈s†
0s

−
n 〉 = − 1

N

∑
k

e−ik·n (2D1 + C1)("k + ρ"ck)− 2λ(2D0 − C0)

2#k
coth

[
#k

2kBT

]
(6)

where

"k = z(1 − γk) "ck = zc(1 − γck)
γk = (1/z)

∑
η

e−ik·η γck = (1/zc)
∑

δ

e−ik·δ

with η and δ being the nearest-neighbour vectors in and out of the plane, respectively. The
quantities z and zc refer to the numbers of nearest-neighbour sites in and out of the plane,
respectively, and kB and n refer to the Boltzmann constant and the lattice vectors, respectively.
The sum rule satisfies C0 + D0 = 〈s†

ns
−
n 〉 + 〈sznszn〉 = S(S + 1). The two branches of the

spin-excitation spectra ωk and #k are

ω2
k = (C0 + αC1)("k + ρ2"ck) + 2αλC1("k + ρ"ck)

− [C1 + 2(α − 1)D1]["k(1 + zγk + zcργck) + ρ"ck(zγk + zcργck + ρ)]

+ ξ2"k + ρξ3("k + 3"ck) + ρ2ξ4"ck (7)

#2
k = 1

2
(C0 + 2D0)("k + ρ2"ck)− α

2
[(C1 + 2D1)(zγk + zcργck)("k + ρ"ck)

− (ξ ′
2 + ρξ ′

3)"k − ρ(3ξ ′
3 + ρξ ′

4)"ck − 2λC1("k + ρ"ck)] +)2
λ(k) (8)

where

ξl = C ′
l + 2(α − 1)D′

l ξ ′
l = C ′

l + 2D′
l (l � 2)

with C ′
l and D′

l denoting

X′
2 =

∑
η′ 	=η

Xη−η′ X′
3 =

∑
δ

Xη−δ X′
4 =

∑
δ′ 	=δ
Xδ−δ′ (X = C,D).
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The quantity α is the decoupling parameter introduced originally by Kondo and Yamaji [8],
and the quantity )λ(k) represents the spin-gap function:

)2
λ(k) = −2αλ(C1 +D1)("k + ρ"ck) + 4λ2D0 + αλ(z + zcρ)(C1 − 2D1)

− λ(C0 − 2D0)(zγk + zcργck). (9)

Equations (5)–(8) constitute a self-consistent equation set which determines all the
parameters introduced. In the isotropic case (λ = 0) the Hamiltonian has rotational symmetry
and the correlation function satisfies Cn = 2Dn. With this in mind we can easily conclude
that G(k, ω) = 2Gz(k, ω) from equations (3) and (4), and that #k = ωk from equations
(7) and (8), which means that the theory is self-consistent. It is stressed that in the isotropic
case the present spin-excitation spectrum cannot be reduced to the previous one [5] where
the magnetic spin was supposed to be 1/2. The reason for this is that the commutation
relationship szsσ = σsσ /2 (σ = ±1) holds for the case of S = 1/2 but does not hold for the
case of S > 1/2.

Figures 1(a)–1(c) show the spin-excitation spectra in the cases of λ = 0.02, 0.2, 0.4,
respectively. The solid line represents the acoustic branch with Et denoting its band top. The
dashed line represents the optical branch withEb denoting its band bottom. For small λ ≈ 0.02
we have Et > Eb (figure 1(a)) which means that the two branches overlap and the excitation
is gapless. When λ reaches the critical value λc ≈ 0.2 we have Et = Eb (figure 1(b)) which
means that the excitation is still gapless. If the single-site anisotropy parameter λ exceeds λc
we have Et < Eb which means that the spin gap starts to open. For large λ a large gap opens
(figure 1(c)).
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Figure 1. The acoustic and optical spin-excitation spectra ω(k) (solid line) and#(k) (dashed line)
in the cases of (a) λ = 0.02, (b) λ = λc ≈ 0.2, and (c) λ = 0.4. The quantity Et (Eb) represents
the band top (bottom) of the acoustic (optical) branch, and the straight dash–dotted lines are guides
to the eye. The plot (d) represents the Brillouin zone.
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The origin of the spin gap has attracted much attention. There are even opposite opinions
about its physical mechanism. Some authors argued that the origin of the spin gap was not
an intrinsic property of the planar spin dynamics but rather results from the antiferromagnetic
coupling of layers [9]. Others believed it likely that the appearance of a spin gap was not related
to the presence of layers but rather reflects a crossover in the spin dynamics from an overdamped
to a quantum disordered regime [10]. In our opinion, the appearance of the spin gap may be
related to magnetic anisotropies such as the Dzyaloshinski–Moriya interaction, the easy-axis-
type and easy-planar-type anisotropies, and the above-discussed single-site anisotropy. Any
anisotropy that breaks the rotational symmetry of the Hamiltonian may result in the spin
excitation splitting into several branches. If this kind of anisotropy is large enough to separate
the spin-excitation branches from each other, a spin gap opens.

In the case of λ 	= 0 the static magnetic susceptibility is also anisotropic, i.e., the axial
componentχzz (external field parallel to z-axis) differs from the planar componentχαα (external
field parallel to α-axis; α = 〈x, y〉):

χzz = g2µ2
B

kBT

∑
n

Dn = −g
2µ2

B(z + zcρ)C1

ω2
0

(10)

χαα = g2µ2
B

2kBT

∑
n

Cn = λg2µ2
B

kBT

2D0 − C0

)0
coth

[
)0

2kBT

]
(λ 	= 0) (11)

where ω2
0 is ω2

k when "k is replaced with z, "ck with zc, γk and γck with 1; )0 is )λ(k) when
"k and "ck are replaced with zero, γk and γck with 1.

Figures 2 and 3 show the susceptibilities χzz and χαα versus reduced temperature T/Jab.
The axial susceptibility χzz has a clear peak near T ∼ Jab, but the planar susceptibility χαα
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Figure 2. The axial susceptibility scaled with (gµB)2 versus the reduced temperature T/Jab in
the cases of λ = 0.02, 0.2, and 0.4. The inset represents the experimental results taken from
reference [7].
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Figure 3. The planar susceptibility scaled with (gµB)2 versus the reduced temperature T/Jab in
the cases of λ = 0.02, 0.2, and 0.4. The line of circles represents the Monte Carlo simulation result
taken from reference [6].

behaves quite differently and increases monotonically with the decreasing temperature. In
particular, when the temperature approaches zero, χαα goes up abruptly. The highly anisotropic
susceptibilities can be attributed to the appearance of the single-site anisotropy. The data on
the axial susceptibility are in qualitative agreement with those from an experiment on the
compounds CsMnBr3 and CsMnI3 [7]. For convenience of comparison, the experimental
results are replotted as an inset in figure 2. The data on the planar susceptibility are in good
agreement with those from the Monte Carlo simulation [6], which are replotted as a line of
circles in figure 3. It is emphasized that the formula for χαα in the case of λ = 0 is different
from that in the case of λ 	= 0, which can be explained as the formation of two differently
magnetic phases. Therefore, the role that the single-site anisotropy plays is similar to the one
that inter-layer coupling plays; the latter case has been investigated by Singh and Elstner [3].

Figure 4 shows the temperature dependence of the specific heat. In the case of small λ the
peak of the specific heat appears near T ∼ Jab which is close to the Curie temperature
Tc ≈ S(S + 1)Jab/3, and shifts to the high-temperature side with increasing single-site
anisotropy λ. The single-peak structure of the specific heat demonstrates that there exists
one phase transition, with two phases formed. The specific heat data can be compared with
those from the Monte Carlo simulation [6] which are replotted as a line of circles in this figure.

In conclusion, using a double-time Green’s function we have investigated the Heisenberg
antiferromagnet with single-site anisotropy on the fully frustrated multilayer triangular lattice.
The critical value of the single-site anisotropy parameter is estimated at λ ≈ 0.2. In the case of
λ < λc the spin-wave excitation is gapless; in the case of λ > λc the spin-wave-excitation gap
opens. We reason that the origin of the spin gap is closely related to the magnetic anisotropy.
The axial susceptibility shows a clear peak near T ∼ Jab, but the planar one behaves quite
differently. This anisotropic behaviour of the two susceptibilities is due to the appearance of
the single-site anisotropy. The specific heat shows a clear peak near T ∼ Jab and indicates
that there exists one phase transition.
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Figure 4. The specific heat against the reduced temperature T/Jab . The line of circles represents
the Monte Carlo simulation result taken from reference [6].
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